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Breaking the Frozen-Flux Constraint

In a collisionless plasma, the violation of the frozen-flux constraint can
be parameterized by the generalized Ohm’s law:

E+u×B =
J×B
n |e|

−∇ ·Pe

n |e|
+

me

n |e|2

[
∂J
∂ t

+ ∇ ·
(

uJ+Ju− JJ
n |e|

)]
We focus on the electron pressure gradient term, −∇ ·Pe/n |e|

I Electron pressure tensor is defined by

Pe ≡me

∫
(v−ue)(v−ue) fe (x,v, t)d3v =

 Pxx ,e , Pxy ,e , Pxz,e ,
Pxy ,e , Pyy ,e , Pyz,e ,
Pxz,e , Pyz,e , Pzz,e ,


I Pe is anisotropic if its diagonal elements are not equal
I Pe is non-gyrotropic if its off-diagonal elements are nonzero
I a scalar pressure, Pe = pe Î, is isotropic and gyrotropic
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Collisionless Reconnection Needs Full Pe Tensor

Fully kinetic simulations of 2D, no
guide-field reconnection indicate
that at reconnection site,

I Pe is indeed anisotropic and
non-gyrotropic

I −∇ ·Pe,off/n |e|2 is the dominant
source of Erec in Ohm’s law

With a guide field, the dominance of
−∇ ·Pe,off/n |e|2 is somewhat
weakened, but it is still important
This term is seen to be important in
electron diffusion region (EDR)
crossings in Cluster data
It is also expected to be important
for MMS studies of EDR
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Previous Work
Towards Integration of Full Pe in Fluid-Based Models

Motivation
Fully kinetic models containing full Pe tensor are usually infeasibly
slow for large scale problems like Earth’s magnetosphere
It is necessary to parameterize anisotropic, non-gyrotropic effects in
reduced, fluid-based models

Previous Works
Hesse and Winske (1993) and Yin et al. (2001): Hybrid or Hall MHD
with ∂tPe + · · ·= (Ωce/τ)

(
Pe −pe Î

)
and vanishing heat flux

I Advantages: Captures certain qualitative features of Pe
I Deficiencies: Not self-consistent; The “relaxation” term is not

well-justified, and is not obvious how to improve

Le et al. (2009): Equation of State for p‖ and p⊥
I Deficiencies: No off-diagonal elements; Fails when |B|= 0 or is small
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Other Challenges in Global Simulations
Beyond the needs for full Pe

Existing codes for Earth’s magnetosphere have further deficiencies:
Operates on uncontrolled numerical resistivity, but the real
magnetosphere is highly collisionless
Efficient implementation of the Hall term is difficult

I Complicated implicit algorithms or artificial hyperresistivity

Multi-ion species handling

We propose the multi-fluid moment model to address these issues
along with the need for full Pe tensor.
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Multi-Fluid Moment Model

Starting point, Vlasov equation for each species, s:

∂t fs +v ·∇fs + (qs/ms)(E+v×B) ·∇v fs = 0, (1)

where fs (x,v, t) is the phase space distribution function

Basic idea, Take velocity moments of Eqn. (1), i.e.,
∫
vnfsd3v :

0th : ∂tns + ∇ · (nsus) = 0, ns ≡
∫
fsd3v ,

1st : nsms (∂tus +us ·∇us) + ∇ ·Ps = nsqs (E+us ×B) ,us ≡
∫
vfsd3v/ns ,

...
Extensible to any order of moments and any number of species
Always needs a closure at highest order
Coupled to full Maxwell equations:
∂tB =−∇×E,∂tE = c2∇×B−∑s nsqsus/ε0

No need to explicitly solve Ohm’s law (embedded in ∂tus equations)!
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10- and 5-Moment Limits of the Multi-Fluid Model

10-moment model (calculating full pressure tensors)
Truncate at v2 moment, omitting subscript s for species kind,

∂tPij +um∂mPij +Pij∂mum + ∂mu[iPj]m + ∂mQijm = (q/m)Blεml [iPjm],

where Q≡m
∫

(v−u)3 fd3v is heat flux
A closure is needed to determine ∂mQijm

5-moment model (calculating scalar pressures)
Assume P is gyrotropic and ∂mQijm = 0, the equations can be closed by

∂tE + ∂m [um (p +E )] = 0

where E ≡ 3p/2+mnu2/2 is the total fluid energy
Equivalent to adiabatic Equation of State, ∂tp +u ·∇p =−γp∇ ·u, with
γ = 5/3
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5-Moment vs. Hall MHD
Is 5-moment consistent with the widely used Hall MHD?

5-moment equations

∂tns + ∇ · (nsus) = 0,s = e, i
∂tus +us ·∇us +∇ps/msns = (qs/ms)(E+us ×B)
∂tB =−∇×E,∂tE = c2∇×B−∑s nsqsus/ε0

Hall MHD equations

∂tn + ∇ · (nu) = 0
∂tu+u ·∇u+∇p/mn = (|e|/m)(E+u×B)

E+u×B = J×B
n|e| −

∇pe
n|e| + me

n|e|2

(
∂J
∂t · · ·

)
∂tB =−∇×E,∇×B = µ0J

5-moment and Hall MHD both retain Hall term and scalar pressures.
5-moment equations can formally reduce to Hall MHD equations with the
following assumptions:

Eqn., 5-moment Assumption Eqn., Hall MHD Physical implication

(1/c2)∂tE = ∇×B−µ0J ε0→ 0 ∇×B = µ0J c → ∞, no EM waves

∇ ·E = |e|(ni −ne)/ε0 ε0→ 0 ne = ni = n neutrality, λDebye→ 0

∂tus + · · ·= qs
ms

(E+us ×B) omit O (me/mi ) E+u×B = · · · ωpe → 0

The effect of me is also confirmed numerically (not presented here).
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Tim Step and Grid Size Constraints

Whistler dispersion is not artificially quadratic!
∆twh = CFL ·∆x/uwh, where uwh = dω/dk

When k → ∞

I Hall MHD: ω ∝ k2→ ∞ ⇒ ∆twh ∝ k−1→ 0
I Multi-fluid moment: ω → ωce ⇒ ∆twh is not

limited as a result of me∂tue 6= 0

The well-known constraint on explicit time
step in Hall MHD is eliminated!

Dispersion relation of whistler waves

ω

k

Hall MHD, me=0

Multi-fluid
moment, me≠0

Agree when k is small

ω∝k2

ω=ωce

New constraints introduced? No problem
No need to resolve λDebye and ωpe if using a simple locally implicit algorithm

I The basic idea: implicit solving using data in a single cell, not global matrix
inversion coupling all cells

The CFL constraint due to speed of light still exists, but is relatively less severe
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Construct Collisionless Closures: Hammett-Perkins Approach
A crucial step to correct treatment of Pe

10-moment model requires ∂mQijm: ∂tPij + · · ·=−∂mQijm

Hammett and Perkins (1990): Find a heat flux approximation so that
the linear responses from the multi-fluid moment equations match
those from Vlasov equations in the Fourier transformed space (k)

I 1D in k-space: q̃k =−n0χ1

√
2
|k| ikvtT̃k

I Maths are skipped here

Implications of the heat flux approximation
I It is collisionless
I It captures kinetic physics like Landau damping
I It argues that heat flux is driven by nonlocal tempearture differences

Further simplifications we made for our real space simulations:
I replace the varying k by a constant, characteristic k0
I replace global nonlocal averages with semi-local averages

⇒ ∂mQ̃ijm = vt |k0|(Pij −pδij)
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Comparative Study of a Modified GEM Problem

PIC (fully kinetic “golden standard”) vs. 5-
and 10-moment

I codes: Particle Simulation Code (PSC)
vs. Gkeyll

100di0×50di0, Ti/Te = 5, nb/n0 = 0.3

Two 10-moment runs:

1 ke0 = ki0 = 1/10−4de0→ ∞

leads to Ps → ps Î? (otherwise
vt |k0|

(
Pij −pδij

)
blows up)

2 ke0 = ki0 = 1/de0
captures key reconnection physics?
(since de0 is a critical scale)
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Snapshots of magnetic field lines (white contours)
overlaid on out-of-plane electron velocity (color
coded) from the 10-moment run with
ke0 = ki0 = 1/de0
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Elctron Current Layer Structure
10-moment run with ke0 = ki0 = 1/de0 agrees with PIC run remarkably well

Out-of-plane electron velocity, uz ,e , when ∆ψ−∆ψ (t = 0) = 2.5
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Note: Only central portions (50di0×20di0) of the domains (100di0×50di0) are shown
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1D Cuts of Flow Velocities
Again, 10-moment run with ke0 = ki0 = 1/de0 agrees with PIC run remarkably well
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Such good agreement persists to later times
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Off-Diagonal Elements of Pe
When ∆ψ−∆ψ (t = 0) = 1
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Qualitative and quantitative comparison of terms
10-moment run with ke = ki = 1/de0 (middle row) recovers the polarities shown in the
PIC run (top row)

I Magnitudes near the X-point are also close

In the 10-moment run with ke = ki = 1/10−4de0 (bottom row), these elements vanish!
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Summary I

Compared to MHD models, the multi-fluid moment models provide a
self-consistent, and more complete description of the plasma

I The 5-moment equations formally reduce to Hall MHD equation if we
assume ε0→ 0 (c → ∞, ne = ni ), and me/mi → 0

I The time step constraint due to artificially quadratic whistler dispersion
in Hall MHD is eliminated
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Summary II

We suggested the paradigm by Hammett and Perkins (1990) to
develop collisionless closures, and generalized their 1D results to 3D
(but with local approximations)

I Though the resulting equation of Pe appears somewhat similar to those
used by Hesse and Winske (1993) and Yin et al. (2001), but they did
not give a rigorous paradigm, but a plausible explanation

With the suggested closure (and appropriate parameters), the
10-moment model can capture some key kinetic features in a large
scale GEM challenge problem

I Lower moments like flow velocities agree remarkably well with fully
kinetic PIC results

I Higher moments like pressure tensor terms also agree reasonably well
with PIC results
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Future Works

Improving the closure
Rigorous generalization to 3D
Testing fast algorithms of the nonlocal integration

Application to Earth’s magnetosphere
Promising features:

I Self-consistent treatments of important non-MHD effects like full Pe
tensor and Hall effect

I Relaxed time step constraint with simple algorithms
I Straightforward multi-species handling

Thank you!
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